

Structural Systems Syllabus			
Course Title	Structural Systems		
Course Code	CVE4370	No. of Credits	3 CH
Department	Civil Engineering Department	Faculty	Engineering
Pre-requisites Course Code	Construction Engineering (CVE4360)	Co-requisites Course Code	
Course Coordinator(s)	Prof Dr Jalal Ahmed Saeed		
Email	jalal.saeed@komar.edu.iq		
Other Course Teacher(s)/Tutor(s)	None		
Learning Hours	Section 1: Tuesday (08:00 to 09:30) & Thursday (08:00 to 09:30), Room 103		
Contact Hours	Sunday (15:00 to 16:00) and	Tuesday (15:00 to	o 16:00)
Course Type	Department Requirement		
Offer in Academic Year	Spring 2016		

COURSE DESCRIPTION

This course **CVE4370** deals with structural systems with an emphasis and concentration on what is related to the design of steel and composite structures. It is recommended for *senior* students in the civil engineering program at KUST who are interested in learning structural systems, specially the design of steel and composite structures.

COURSE OBJECTIVES

The main objectives of this course are:

- To learn the behavior and design of structural steel and composite components, for example: Tension and Compression members, Connections in truss and frame structures, Beams and Columns -----etc
- -To gain an educational and comprehensive experience in the design of simple steel and composite structures.

COURSE LEARNING OUTCOMES

After participating in the course, students would be able to:

- **1.** Understand the basic concepts of design of structural steel members and composite members as well [ABET Program Outcome (**a**)].
- **2.** Solve engineering problems related to selection of structural steel standard sections [ABET Program Outcome (**e**)].
- **3.** Apply the techniques of failure that is possible to happen in both structural steel and composite members [ABET Program Outcome (**k**)].
- **4.** Analyze and design to select the most appropriate economical structural elements. [ABET Program Outcome (**c**)].

Grading Scale:

Points	Percentage Scores
Α	95-100
А-	90-94
B +	87-89
В	83-86
В-	80-82
C+	75-79
С	70-74
C-	65-69
D +	60-64
D	55-59
D-	50-54
F	0-49
W	Withdrawal
Ι	Incomplete

Note: The minimum passing grade to pass this course is C-which is equivalent to 65%.

COURSE CONTENT

Course topics include:

Section 1: Introduction to Structural Systems

Section 2: Materials and Properties

- Section 3: Tension Members
- Section 4: Truss Analysis and Design
- Section 5: Bolted and Welded Joints and Connections
- Section 6: Design of Simple Flexural Steel Members (Beams)
- Section 7: Design of Continuous Steel Beams
- Section 8: Plate Girders
- Section 9: Compression Members Steel Columns

Section 10:Base and Bearing Plates

Section 11:Composite Construction (Concrete and Steel structural components)

COURSE TEACHING AND LEARNING ACTIVITIES

- 1. CVE 4370 will consist of 15 weeks of lectures (including holidays and breaks).
- 2. Students will be assigned Home Works, Exams, and a (GDP) Group Design Project.
- 3. Oral Discussions and Quizzes
- 4. Debates and Class Activities

COURSE ASSESSMENT TOOLS			
Assessment Tool	Description	Weight	
Quizzes (4)	There will be four quizzes as scheduled in the course schedule.	10 %	
Assignments (2)	Two assignments will be given at weeks 7 and 13.	5 %	
Midterm	The midterm exam will be conducted after week 7 that covers Sections $1-5$ (included) as scheduled in the course schedule.	25 %	
Group Design Project	Group Design Project to be performed on analyzing and designing of an Industrial Building or a warehouse.	10 %	
Test	There will be test after week 12 that covers Sections $6 - 10$ (included).	20 %	
Final Exam	The final exam will be conducted after week 15 that covers all the Sections started from Section 1 to Section 11.	30 %	

ESSENTIAL READINGS: (Journals, textbooks, website addresses etc.)

References:

Textbook and Related Design Manuals:

- 1. C Salmon and J Johnson "*Steel Structures, Design and Behaviour* ", Harper & Row Publishers, Inc.
- 2. AISC (2008). *Manual of Steel Construction ASD & LRFD Combined Methods*, 13th edn, American Institute of Steel Construction.

Other References:

- 1. Gaylord and Gaylord, "Design of Steel Structures".
- 2. AISC (2001). *Manual of Steel Construction Load and Resistance Factor Design*, 3rd edn, American Institute of Steel Construction.
- 3. Lamberd Tall, "Structural Steel Design ".
- 4. J Bowels, "Structural Steel Design".
- 5. Gaylord and Gaylord, "Structural Engineering handbook"
- 6. Beedle, "Plastic Design of Steel Frames".
- 7. B Krishnamachar and D A Simha, "Design of Steel Structures".
- 8. J McCormac, "Structural Steel Design ".

COURSE POLICY (including plagiarism, academic honesty, attendance etc)

Attendance policy - Students are expected to attend all the lectures and to adequately perform all the work assigned by the Coordinator.

Tardy policy - All the assigned work must be submitted by the due date and time. Submissions that are 24 hours late will be penalized for 25% of the grade. Those which are 24 - 48 hours late will be penalized for 50% of the grade. After that, submissions will not be accepted. Exceptions can be made for students with emergencies or special circumstances approved by the Department.

Make-up policy - Students are expected to take the exams on the assigned dates and times. Make-up exams may be arranged for students with emergencies or special circumstances approved by KUST officials.

Quality of Submissions - Students are encouraged to submit their work on engineering clean white paper [A4]. They have to explain and show all calculations including appropriate references to the AISC specifications and final drawings of designed structures.

Academic Dishonesty:

Any type of dishonesty such as Plagiarism, Copying from others, etc will be found guilty and subject to punishment by the University Consul according to the regulations

Note: Supplementary problems will be given either as homework in the text book and which are posted in the Google Classroom and during the class.

Week	Beg/End Dates	Topics (Sections)	Course Assignments	CLO's
1	28-2 to 3-3 / 2016	Section 1: Structural Systems		
		- Introduction		
		- Structural Design		Outcome # 1
		- Structural Members		Outcome # 1
		- Structural Connections		
		- Structural Loads		
2	6-3 to 10-3 / 2016	Section 2: Materials & Properties		
		Structural Steel		
		Properties		
		 Specifications 		Outcome # 1
		Structural Shapes		
		Design Tables		
		• Design criteria for tension		
		members		
3	13-3 to 17-3 / 2016	Section 3: Tension Members		
		• Yielding, Fracture		
		• Examples		Outcomes # 1 & 3
		• Effective net area		
		Special cases		
		Nawroz Holiday (21-3 to 24-3 / 2016)		I
4	27-3 to 31-3 / 2016	Section 3: Tension Members –		
		Contd.	Quiz 1	Outcome # 2
		Design examples		
5	3-4 to 7-4 / 2016	Section 3: Tension Members –		
		Contd.		Outcomes # 2 & 4
		• Staggered Bolts		
		Design examples		
6	10-4 to 14-4 / 2016	Section 4: Truss Analysis & Design		
		• Design of roof sheets		
		 Purlins and Sag rods 	Quiz 2	Outcome # 4
		• Design of truss members (for		
		tension and compression)		
7	17-4 to 21-4 / 2016	Section 5: Bolted and Welded Joint		
		Connections	Assignment 1	Outcome # 4
		Design of connections		
	22-4 to 28-4 / 2016	Mid Term Exam		

8	1-5 to 5-5 / 2016	 Section 6: Design of Simple Flexural Steel Members Compact and non-compact sections Design examples 		Outcomes # 2 & 4
9	8-5 to 12-5 / 2016	Section 7: Design of Continuous Steel Beams • Design equations • Design examples		Outcomes # 2 & 4
10	15-5 to 19-5 / 2016	Section 8: Plate GirdersSpecificationsDesign example	Quiz 3	Outcomes # 2 & 4
11	22-5 to 26-5 / 2016	Section 9: Compression Members – Steel Columns • Design equations • Specifications & design charts • Design examples		Outcomes # 2 , 3 & 4
12	29-5 to 2-6 / 2016	Section 10: Base and Bearing Plates • Design examples	Quiz 4	Outcome 4
		Test		
13	5-6 to 9-6 / 2016	Section 11: Composite Construction- Concrete & Steel • Introduction • Composite action	Assignment 2	Outcomes # 1 & 4
14	12-6 to 16-6 / 2016	Section 11: Composite Construction- Concrete & Steel, Contd. • Composite beams • Composite slabs		Outcomes # 1 & 4
15	19-6 to 23-6 / 2016	Review Week for Academic Courses		
16	24-6 to 30-6 / 2016	Final Examination for Academic Courses		

9. A. Saced

Instructor Prof Dr Jalal A Saeed

Department Approval