

Strength of Materials Syllabus			
Course Title	Strength of Materials		
Course Code	CVE2315	No. of Credits	3 CH
Department	All Engineering Departments	Faculty	Engineering
Pre-requisites Course Code	Applied Mechanics: Statics & Dynamics (MEE2405)	Co- requisites Course Code	
Course Coordinator(s)	Dr. Ibrahiem Abdul Razak Al-Ani		
Email	Ibrahiem.abdulrazaq@komar.edu.iq	IP No.	
Other Course Teacher(s)/Tutor(s)	None		
Learning Hours	Section 1: Sunday (10:00 to 11:30) & Tuesday (10:00 to 11:30), Room 111 Section 2: Sunday (14:00 to 15:30) & Tuesday (14:00 to 15:30), Room 105 Section 3: Monday (12:00 to 1:30) & Wednesday (12:00 to 1:30), Room 105		
Contact Hours	Sunday (16:00 to 17:00), Monday (10:00 to 12:00), Thursday (9:00 to 2:00)		
Course Type	College Requirement		
Offer in Academic Year	Spring 2016		

COURSE DESCRIPTION

This course provides the students with exposure to the systematic methods for solving engineering problems. Topics involved are introduction to the strength of materials, stress and strain, Poisons ratio and thermal expansion, pressure vessel and stress concentrations, properties of areas, torsion and round shafts, beam reactions, stresses in beams, beam deflection, and eventually beam design. Generally, it delivers an understanding of materials and structural components behavior in reaction to outside forces. This course style has been taken from Purdue University.

COURSE LEARNING OUTCOMES

After participating in the course, students would be able to:

- **1.** Understand the basic concepts of strength of materials (normal stress, moment of inertia and beam reactions) [ABET Program Outcome A].
- **2.** Solve simple engineering problems [ABET Program Outcome E].
- **3.** Apply the types of failure modes, material property influence, and use of factors of safety or allowable stresses/strains on design [ABET Program Outcome E].
- 4. Demonstrate the reaction forces, moments; deflection and bending with shear stress

[ABET Program Outcome E].

5. Sketch shear and moment diagrams for designing the beam [ABET Program Outcome E].

Grading	Scale:

Scale:		
Points	Percentage Scores	
Α	95-100	
А-	90-94	
B +	87-89	
В	83-86	
В-	80-82	
C+	75-79	
С	70-74	
C-	65-69	
D+	60-64	
D	55-59	
D-	50-54	
F	0-49	
W	Withdrawal	
Ι	Incomplete	

Note: The minimum passing grade to pass this course is C-which is equivalent to 65%.

COURSE CONTENT

Course topics include:

Chapter 1: Introduction to Strength of Materials

Chapter 2: Stress and Strain

Chapter 3: Poisson's Ratio and Thermal Expansion

Chapter 4: Pressure Vessels and Stress Concentrations

Chapter 5: Bolted and Welded Joints

Chapter 6: Properties of Areas

Chapter 7: Torsion in Round Shafts

Chapter 8: Beam Reactions, Shear Diagrams, and Moment Diagrams

Chapter 9: Stresses in Beams

Chapter 10: Beam Deflection

Chapter 11: Beam Design

COURSE TEACHING AND LEARNING ACTIVITIES

Course Teaching and Learning Activities: (short description)

- 1. Interactive class discussion
- 2. Hands- on Exercises
- 3. Assignments, Home work
- 4. Tests and Quizzes

COURSE ASSESSMENT TOOLS			
Assessment Tool	Description	Weight	
Quizzes (4)	There will be four quizzes as scheduled in the course schedule.	10 %	
Assignments (2)	Two assignments will be given at week 3 and week 13.	5 %	
Midterm	The midterm exam will be conducted after week 7 that covers Chapters 1 to 6 as scheduled in the course schedule.	25 %	
Project	Project to be performed on different topics in Strength of Materials	10 %	
Test	There will be test after week 12 that covers Chapters 7-9.	20 %	
Final Exam	The final exam will be conducted after week 15 that covers all the chapters started from Chapter 1 to Chapter 11.	30 %	

ESSENTIAL READINGS: (Journals, textbooks, website addresses etc.)

References:

Textbook:

Dupen, B. (2012). Applied Strength of Materials for Engineering Technology. 2nd Edition. Indiana University, USA.

Other References

- 1- Hibbeler, R. C. Mechanics of Materials, 6th SI Edition, Prentice Hall.
- 2- Beer, F. P., Johnston, E.R., DeWolf, J. T. Mechanics of Materials, 4th Edition, McGraw Hill.

COURSE POLICY (including plagiarism, academic honesty, attendance etc)

Attendance Policy:

Students are expected to attend each class for the entire semester. Students are responsible for material present in lectures. Only students with official KUST absence, family crises, and illness are excused from class. Three occasions of lateness count as one absence. The student who misses 10 percent of the classes will be placed on probation.

Make up Policy:

Since all examination are announced in advance, zero grade will be given to any missed examination unless a student's has an acceptable reason, such as illness, for not being able to take the examination during all those days when the examination was announced.

Academic Dishonesty:

Any type of dishonesty (Plagiarism, Copying another's test or home-work, etc) will Not be tolerated. Students found guilty of any type of academic dishonesty are subject to failure in this course, plus further punishment by the University Consul.

Note: Supplementary problems will be given either as homework in the text book and which are posted in the Google Classroom and during the class.

Week	Beg/End Dates	Topics (Chapters)	Course Assignments per chapter
1	28-2 to 3-3 / 2016	Chapter 1: Introduction to Strength of Materials	
2	6-3 to 10-3 / 2016	 Chapter 2: Stress and Strain Normal stress and strain Sign convention Shear stress and strain 	
3	13-3 to 17-3 / 2016	Chapter 3: Poisson's Ratio and Thermal Expansion • Poisson's ratio • Thermal expansion & thermal stress	Quiz 1
4	27-3 to 31-3 / 2016	Chapter 4: Pressure Vessels and Stress Concentrations • Thin-Walled pressure vessels • Stress concentration in tension	Assignment 1
5	3-4 to 7-4 / 2016	Chapter 5: Bolted and Welded Joints • Bolted lap joints loaded in tension • Welded lap joints	
6	10-4 to 17-4 / 2016	 Chapter 6: Properties of Areas Dimensions and area Moment of inertia Hollow beams sharing a centroidal axis 	Quiz 2
7	17-4 to 21-4 / 2016	 Chapter 6: properties of Areas Compound beams with different neutral axes Hollow beams with different neutral axes Radius of Gyration Polar moment of inertia 	

	22-4 to 28-4 / 2016	Mid Term Exam	
8	2-5 to 5-5 / 2016	Chapter 7: Torsion in Round Shafts Shear stress in a round shaft Angle of twist in a round shaft Stress concentration in torsion 	
9	8-5 to 12-5 / 2016	Chapter 8: Beam Reactions, Shear Diagrams, and Moment Diagrams• Loads on beams• Reactions for simply- supported simple beams• Reactions for overhanging and cantilever beams	
10	15-5 to 19-5 / 2016	Chapter 8: Beam Reactions, ShearDiagrams, and Moment Diagrams• Shear diagrams• Moment diagrams	Quiz 3
11	22-5 to 26-5 / 2016	 Chapter 9: Stresses in Beams Bending stress in beams Bending stress in steel beams 	
12	29-5 to 2-6 / 2016	 Chapter 9: Stresses in Beams Shear stress in beams Allowable load 	Quiz 4
13	5-6 to 9-6 / 2016	Test Chapter 10: Beam Deflection • Radius of curvature • The formula method for simple cases	Assignment 2 Project Presentation
14	12-6 to 16-6 / 2016	 Chapter 11: Beam Design Wide-flange steel beam design Timber beam design 	
15	19-6 to 23-6 / 2016	Review Week for Academic Courses	
16	24-6 to 30-6 / 2016	Final Examination for Academic Courses	