

Reinforced Concrete II Syllabus			
Course Title	Reinforced Concrete II		
Course Code	CVE 4366	No. of Credits	3 CH
Department	Civil Engineering	Engineering	
Pre-requisites Course Code	Reinforced Concrete I (CVE 3365)	Co-requisites Course Code	
Course Coordinator(s)	Dr. Sabah Saadi Fayaed		
Email	sabah.saadi@komar.edu.iq	IP No.	238
Other Course Teacher(s)/Tutor(s)	Non		1
Learning Hours	Section 1: Tuesday and Thursday (10:00am - 11:30am) Section 2: Tuesday and Thursday (4:00pm- 5:30pm)		
Contact Hours	Tuesday and Thursday (12:00pm-4:00pm)		
Course Type	Departmental Requirement		
Offer in Academic Year	Spring 2016		

COURSE DESCRIPTION

This course provides the fundamentals to the analysis and design procedures of reinforced concrete structures. Various topics were described like design of short columns subject to axial load and bending, footings, retaining walls, torsion, two-way slabs, walls and prestressed concrete. The style of this syllabus is adopted from Iowa University.

COURSE OBJECTIVES

In this course the students will learn the fundamentals of design of reinforced concrete structures, by the end of the course they will be able to analyze frame structures and design the components: footings, retaining walls, two-way slabs and columns. This course will provide background in the use of current ACI building codes (318-11), specifications, and recommendations.

COURSE LEARNING OUTCOME

- After participating in the course, students would be able to:
- 1. Understand the fundamentals of reinforced concrete structures (ABET Outcome A)
- 2. Choose proper dead, live and other structural loads (ABET Outcome E)
- 3. Analyze, design and detail short reinforced concrete columns for axial load and bending.

(ABET Outcome E &C)

4. Analyze and design reinforced concrete footings, two way slabs and retaining wall for flexure,

- shear and axial loads using ACI standard (ACI 318-11) (ABET Outcome E&C)
- 5. Apply the prestressed theory for concrete structure. (ABET Outcome E)
- 6. Determine the torsion reinforcement for concrete structures. (ABET Outcome E)

Grading Scale:

Points	Percentage Scores
Α	95-100
A-	90-94
B +	87-89
В	83-86
B-	80-82
C+	75-79
С	70-74
C-	65-69
D+	60-64
D	55-59
D-	50-54
F	0-49
W	Withdrawal
Ι	Incomplete

Note: The minimum passing grade to pass this course is C-which is equivalent to 65%.

COURSE CONTENT

Course Topics Include:

Chapter 1: Introduction to Columns

- Chapter 2: Design of Short Columns Subject to Axial Load and Bending
- Chapter 3: Footings
- Chapter 4: Retaining Walls
- Chapter 5: Torsion
- Chapter 6: Two-Way Slabs, Direct Design Method
- Chapter 7: Walls

Chapter 8: Prestressed Concrete

COURSE TEACHING AND LEARNING ACTIVITIES

Course Teaching and Learning Activities:

- 1. Interactive class discussion
- 2. Hands- on Exercises
- 3. Home work
- 4. Tests and Quizzes

COURSE ASSESSMENT Tools

Assessment Tool	Description	Weight			
Quizzes (5)	Quizzes are scheduled as shown in the semester schedule.	15 %			
Mid-term	The mid-term will be conducted after week 7 of the semester.	25 %			
Homework (2)	The H.W will be conducted during the semester.	5 %			
Contribution	Students will be evaluated by the instructor based on their participation in the class, commitment, pop quizzes and other activities.	5 %			
Test	The test will be conducted after week 12 of the semester.	20 %			
Final Exam	The final exam will be conducted in week 16 of the semester	30 %			

ESSENTIAL READINGS: (Journals, textbooks, website addresses etc.)

Textbooks:

Designed of Reinforced Concrete, 9 th edition, (2014), Jack C. McCormac and Russell H. Brown. Wiley, ISBN: 978-1-118-12984-5.

References:

- 1- Reinforced Concrete: Mechanics and Design", 6th Edition, (2011), Wight and MacGregor.
- 2- Reinforced Concrete Design, 7th Edition, (2007), C-K. Wang, C.G. Salmon, J.A. Pincheira, Wiley Publishers, ISBN: 0-471-26286-2

COURSE POLICY (including plagiarism, academic honesty, attendance etc)

Attendance Policy:

Students are expected to attend each class for the entire semester. Students are responsible for material present in lectures. Only students with official KUST absence, family crises, and illness are excused from class. Three occasions of lateness count as one absence. The student who misses 10 percent of the classes will be placed on probation.

Make up Policy:

Since all examination are announced in advance, zero grade will be given to any missed examination unless a student's has an acceptable reason, such as illness, for not being able to take the examination during all those days when the examination was announced.

Academic Dishonesty:

Any type of dishonesty (Plagiarism, Copying another's test or home-work, etc) will Not be tolerated. Students found guilty of any type of academic dishonesty are subject to failure in this course, plus further punishment by the University Consul.

Course calendar: Please check the academic calendar for spring 2016

Week	Beg/End Dates	Topics (Chapters)	CLO	Course Assignments per chap
1	(28-2 to 3-3) / 2016	Chapter 1: Introduction to Columns	1&3	
		Types of Columns		
		Axial Load Capacity of		
		Columns		
		• Failure of Tied and Spiral		
		Columns		
		Code Requirements for Cast-in-		
		Place Columns		
		Design Formulas		
2	(6-3 to 10-3) / 2016	Chapter 2: Design of Short Columns	1&3	
		Subject to Axial Load and Bending		
		Axial Load and Bending		
		The Plastic Centroid		
		Development of Interaction		
		Diagrams		
		Use of Interaction Diagrams		
3	(13-3 to 17-3) / 2016	Chapter 2: Continued	1&3	
		Code Modifications of Column		
		Interaction Diagrams		
		• Design and Analysis of		
		Eccentrically Loaded Columns		
		Using Interaction Diagrams		
		Shear in Columns		
		Biaxial Bending		
		Design of Biaxially Loaded		
		Columns		
	(20-3 to 24-3) / 2016	Nawroz Holiday		
4	(27-3 to 31-3) / 2016	Chapter 3: Footings	4	Quiz 1 (Ch.1 and Ch.2)
		• Types of Footings		
		Actual Soil Pressures		
		Allowable Soil Pressures		
		• Design of Wall Footings		
		• Design of Square Isolated		
		Footings		
5	(3-4 to 7-4) / 2016	Chapter 3: Continued	4	
		Footings Supporting Round or		
		Regular Polygon-Shaped		
		Columns		
		• Load Transfer from Columns to		
		Footings		
		Rectangular Isolated Footings		
		Combined Footings		

6	(10-4 to 14-4) / 2016	 Chapter 4: Retaining Walls Types of Retaining Walls Drainage Failures of Retaining Walls Lateral Pressure on Retaining Walls Footing Soil Pressures 	4	Quiz 2 (Ch.3) Submitting "H.W1"
7	(17-4 to 21-4) / 2016	 Chapter 4: Continued Design of Semigravity Retaining Walls Effect of Surcharge Estimating the Sizes of Cantilever Retaining Walls Design Procedure for Cantilever Retaining Walls 	4	
	(24-4 to 28-4) / 2016	Mid-term		(Ch.1, Ch.2, Ch.3 and Ch.4)
0	(1-3 to 3-3) / 2010	 Torsional Reinforcing Torsional Moments that Have to Be Considered in Design Torsional Stresses When Torsional Reinforcing Is Required by the ACI 		
9	(8-5 to 12-5) / 2016	Chapter 5: Continued	6	
		 Torsional Moment Strength Design of Torsional Reinforcing Additional ACI Requirements 		
10	(15-5 to 19-5) / 2016	Chapter 6: Two-Way Slabs, Direct	2 & 4	Quiz 3 (Ch.5)
		 Design Method Analysis of Two-Way Slabs Design of Two-Way Slabs by the ACI Code Column and Middle Strips Shear Resistance of Slabs Depth Limitations and Stiffness Requirements 		
11	(22-5 to 26-5) / 2016	Chapter 6: Continued	2 & 4	Submitting "H.W2"
		 Limitations of Direct Design Method Distribution of Moments in Slabs Design of an Interior Flat Plate Placing of Live Loads 		

		Analysis of Two-Way Slabs with Beams		
12	(29-5 to 2-6) / 2016	Chapter 7: Walls	1 & 4	Ouiz 4 (Ch.6)
		 Non–Load-Bearing Walls 		
		• Load-Bearing Concrete Walls-		
		Empirical Design Method		
		• Load-Bearing Concrete Walls-		
		Rational Design		
		Shear Walls		
		• ACI Provisions for Shear Walls		
		TEST (Ch. 5, Ch.6 and Ch.7)		
13	(5-6 to 9-6) / 2016	Chapter 8: Prestressed Concrete	5	
		 Advantages and Disadvantages 		
		of Prestressed Concrete		
		Pretensioning and		
		Posttensioning		
		Materials Used for Prestressed		
		Concrete		
		Stress Calculations		
14	(12-6 to 16-6) / 2016	Chapter 8: Continued	5	
		Shapes of Prestressed Sections		
		Prestress Losses		
		• Ultimate Strength of		Quiz 5 (Ch.8)
		Prestressed Sections		
		Deflections		
15	(19-6 to 23-6) / 2016	Review Week for Academic Courses		
16	(26-6 to 30-6) / 2016	Final Examination for Academic		All the Chapters
		Courses		