

Reinforced Concrete Syllabus			
Course Title	Reinforced Concrete I		
Course Code	CVE 3365	No. of Credits	3 CH
Department	Civil Engineering	Faculty	Engineering
Pre-requisites Course Code	Engineering Materials (CVE 3325C)	Co- requisites Course Code	
Course Coordinator(s)	Dr. Sabah Saadi Fayaed		
Email	sabah.saadi@komar.edu.iq	IP No.	116
Other Course Teacher(s)/Tutor(s)	Non	·	
Learning Hours	Section 1: Sunday and Tuesday (2:00pm - 3:30pm) Section 2: Monday and Wednesday (2:00pm - 3:30pm)		
Contact Hours	Wednesday and Thursday (8:00am-10:00am)		
Course Type	Departmental Requirement		
Offer in Academic Year	Fall 2015		

COURSE DESCRIPTION

This course provides an introduction to the reinforced concrete design procedures that will be the foundation for other concrete design course. Various topics were described like Flexural Analysis of Beams, Strength Analysis of Beams, Design of Rectangular Beams and One-Way Slabs, Analysis and Design of T Beams and Doubly Reinforced Beams, Serviceability, Bond Development Lengths, and Splices, Shear and Diagonal Tension. The style of this syllabus is adopted from Iowa University.

COURSE OBJECTIVES

In this course the students will learn the fundamentals of design of reinforced concrete structures, by the end of the course they will be able to analyze frame structures and design basic components: beams, one-way slabs and columns. This course will provide background in the use of current ACI building codes (318-11), specifications, and recommendations.

COURSE LEARNING OUTCOME

After participating in the course, students would be able to:

- 1. Understand the principles of reinforced concrete structures (ABET Outcome A)
- 2. Choose proper dead, live and other structural loads (ABET Outcome E)
- 3. Calculate short-term and long-term deflections for reinforced concrete beams. (ABET

Outcome E)

4. Design and analyze reinforced concrete beams, slabs and columns for flexure, shear and axial loads using ACI standard (ACI 318-11) (ABET Outcome E&C)

- 5. Apply the serviceability requirements to control deflections and cracking. (ABET Outcome E)
- 6. Determine shear reinforcement for concrete beams. (ABET Outcome E)

Grading Scale:

Points	Percentage Scores	
Α	95-100	
А-	90-94	
B+	87-89	
В	83-86	
B-	80-82	
C+	75-79	
С	70-74	
C-	65-69	
D+	60-64	
D	55-59	
D-	50-54	
F	0-49	
W	Withdrawal	
Ι	Incomplete	

Note: The minimum passing grade to pass this course is C-which is equivalent to 65%.

COURSE CONTENT

Course Topics Include:

Chapter 1: Introduction

Chapter 2: Flexural Analysis of Beams

Chapter 3: Strength Analysis of Beams According to ACI Code

Chapter 4: Design of Rectangular Beams and One-Way Slabs

Chapter 5: Analysis and Design of T Beams and Doubly Reinforced Beams

Chapter 6: Serviceability

Chapter 7: Bond, Development Lengths, and Splices

Chapter 8: Shear and Diagonal Tension

COURSE TEACHING AND LEARNING ACTIVITIES

Course Teaching and Learning Activities:

- 1. Interactive class discussion
- 2. Hands- on Exercises
- 3. Home work
- 4. Tests and Quizzes

COURSE ASSESSMENT Tools

Assessment Tool	Description	Weight	
Quizzes (5)	Quizzes are scheduled as shown in the semester schedule.	10 %	
Mid-term	The mid-term will be conducted after week 7 of the semester.	25 %	
Homework (2)	The H.W will be conducted during the semester.	5 %	
Contribution	Students will be evaluated by the instructor based on their participation in the class, commitment, pop quizzes and other activities.	5 %	
Test	The test will be conducted after week 12 of the semester.	15 %	
Project	The project will be conducted in week 13 of the semester	10 %	
Final Exam	The final exam will be conducted in week 16 of the semester	30 %	

ESSENTIAL READINGS: (Journals, textbooks, website addresses etc.)

Textbooks:

Designed of Reinforced Concrete, 9 th edition, (2014), Jack C. McCormac and Russell H. Brown. Wiley, ISBN: 978-1-118-12984-5.

References:

1- Reinforced Concrete: Mechanics and Design", 6th Edition, (2011), Wight and MacGregor. 2- Reinforced Concrete Design, 7th Edition, (2007), C-K. Wang, C.G. Salmon, J.A. Pincheira ,Wiley Publishers, ISBN: 0-471-26286-2

COURSE POLICY (including plagiarism, academic honesty, attendance etc)

Attendance Policy:

Students are expected to attend each class for the entire semester. Students are responsible for material present in lectures. Only students with official KUST absence, family crises, and illness are excused from class. Three occasions of lateness count as one absence. The student who misses 10 percent of the classes will be placed on probation.

Make up Policy:

Since all examination are announced in advance, zero grade will be given to any missed examination unless a student's has an acceptable reason, such as illness, for not being able to take the examination during all those days when the examination was announced.

Academic Dishonesty:

Any type of dishonesty (Plagiarism, Copying another's test or home-work, etc) will Not be tolerated. Students found guilty of any type of academic dishonesty are subject to failure in this course, plus further punishment by the University Consul.

Course calendar: Please check the academic calendar for fall 2015

Week	Beg/End Dates	Topics (Chapters)	Course Assignments per chapter
1	(28-9 to 1-10) / 2015	Chapter 1: Introduction	Chapter
		Concrete and Reinforced	
		Concrete	
		Advantages of Reinforced	
		Concrete as a Structural	
		Material	
		Disadvantages of Reinforced	
		Concrete as a Structural	
		Material	
		Compatibility of Concrete and Steel	
2	(4-10 to 8-10) / 2015	Chapter 2: Flexural Analysis of	
		Beams	
		Cracking Moment	
		• Elastic Stresses-Concrete	
		Cracked	
		Olumate or Nominal Flexural Moments	
3	(11-10 to 15-10) / 2015	Chapter 3: Strength Analysis of	Ouiz 1 (Ch 1 and Ch 2)
5		Beams According to ACI Code	Quiz I (Chi.i and Chi.z)
		Design Methods	
		• Advantages of Strength Design	
		Structural Safety	
		• Derivation of Beam	
		Expressions	
4	(18-10 to 22-10) / 2015	Chapter 3: Continued	
		• Strains in Flexural Members	
		Balanced Sections, Tension-	
		Controlled Sections, and	
		Compression-Controlled	
	(25 10 4- 20 10) / 2015	Minimum Percentage of Steel	$\mathbf{O}_{\mathbf{r}} = \mathbf{O}_{\mathbf{r}} (\mathbf{C} + \mathbf{C})$
5	(25-10 to 29-10) / 2015	Chapter 4: Design of Kectangular Booms and One-Way Slabs	Quiz 2 (Cn.3)
		Load Factors	
		 Design of Rectangular Beams 	
		Determining Steel Area When	
		Beam Dimensions Are	
		Predetermined	
6	(1-11 to 5-11) / 2015	Chapter 4: Continued	Submitting "H.W1"
		One-Way Slabs	
		Cantilever Beams and	
		Continuous Beams	

7	(8-11 to 12-11) / 2015	 Chapter 5: Analysis and Design of T Beams and Doubly Reinforced Beams T Beams Analysis of T Beams Another Method for Analyzing T Beams Design of T Beams 	Quiz 3 (Ch.4)
	15-11 to 19-11	Mid-term	(Ch.1, Ch.2, Ch.3, Ch.4 and Ch.5)
8	(22-11 to 26-11) / 2015	 Chapter 5: Continued Design of T Beams for Negative Moments L-Shaped Beams Design of Doubly Reinforced Beams 	
9	(29-11 to 3-12) / 2015	 Chapter 6: Serviceability Importance of Deflections Control of Deflections Calculation of Deflections 	
10	(6-12 to 10-12) / 2015	 Chapter 6: Continued Effective Moments of Inertia Long-Term Deflections Simple-Beam Deflections Continuous-Beam Deflections 	
11	(13-12 to 17-12) / 2015	 Chapter 7: Bond, Development Lengths, and Splices Cutting Off or Bending Bars Bond Stresses Development Lengths for Tension Reinforcing Development Lengths for Bundled Bars 	Quiz 4 (Ch.5 and Ch.6) Submitting "H.W2"
12	(20-12 to 24-12) / 2015	 Chapter 7: Continued Development Lengths for Welded Wire Fabric in Tension Development Lengths for Compression Bars Critical Sections for Development Length 	
	(27-12 to 31-12) / 2015	New Year Holiday	
13	(3-1 to 7-1) / 2016	 Chapter 8: Shear and Diagonal Tension Shear Stresses in Concrete Beams 	TEST (Ch. 6 and Ch.7)

		 Shear Cracking of Reinforced Concrete Beams Web Reinforcement Behavior of Beams with Web Reinforcement Design for Shear 	Quiz 5 (Ch.8)
15	(17-1 to 21-1) / 2016	Review Week for Academic Courses	
16	(24-1 to 28-1) / 2016	Final Examination for Academic Courses	All the Chapters