

PETROLEUM PRODUCTION METHODS SYLLABUS			
Course Title	Petroleum Production Methods		
Course Code	PTE4355 No. of Credits		3 theoretical CH
Department	Petroleum Engineering	College	Engineering
Pre-requisites Course Code	PTE3315C	Co-requisites Course Code	N/A
Course Coordinator(s)	Muhammad Ali		
Email	muhammad.ali@komar.edu.iq	IP No.	
Other Course Teacher(s)/Tutor(s)	None		
Class Hours	SUN//TUE: 10:00-11:30Room: 203		
Contact Hours	SUN: 13:00 - 16:00 Room: 308		
Course Type	Departmental Requirement		
Offer in Academic Year	Fall 2015		

COURSE DESCRIPTION

This course will discuss the petroleum production systems including the inflow and outflow performance concepts. This course will then investigate various well completion options and their design criteria. Furthermore, Well stimulation techniques, artificial lift, advanced well, perforations, work over operations and problem well diagnosis will be discussed in details.

COURSE OBJECTIVES

The objective of this course is to learn principles of oil well and gas well production equipments and surface production operations. Furthermore, The objective of the course is familiarizing the students with concepts of well productivity, stimulation and various operational issues and to equip them with the knowledge to handle various workover jobs and field operations.

COURSE LEARNING OUTCOMES

After participating in the course, students should be able to:

- Gain an overall knowledge of various hydrocarbon production processes from the time a reservoir is discovered to end users (ABET A, E),
- Identify the role of the petroleum production engineer in optimizing recovery (ABET A),
- Evaluate and optimize oil and gas well performance using Nodal Analysis (ABET A, E, K),
- Design suitable bottom hole completions systems (ABET E,K),
- Design principles of different perforation systems (ABET E,K),
- Classify the different types of artificial lift methods (A,E),
- Diagnose the problems of wells and to design work over operation (ABET A, E,K),
- Analyze the Advanced Wells Technologies. (ABET A).

	GRAM OUTCOMES:	<u>u e i i i i</u>	•		
	A An ability to apply knowledge of mathematics, science, and engineering				
	lity to identify, formulate, and				
K An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.					
	//www.abet.org/eac-criteria-2	014-2015/			
GUIDELINES O	IN GRADING POLICY				
	Points	Percentage Scores	Grade		
	А	95–100	4.0		
	A-	90-94	3.7		
	B+	87–89	3.3		
	В	83-86	3.0		
	В-	80-82	2.7		
	C+	75–79	2.3		
	С	70-74	2.0		
	C-	65-69	1.7		
	D+	60–64	1.3		
	D	55-59	1.0		
	D-	50-54	0.7		
	F	0–49	0		
	1	Incomplete Course Work			
	W	Official Withdrawal			
Passing Grade is 65% or above					
COURSE CON					

Course topics include:

- 1. Introduction to Petroleum Production Methods
- 2. Reservoir Production Concepts
- 3. Performance of Flowing Wells and Nodal Analysis
- 4. Wellbore Completion Concepts, equipments and Designing
- 5. Wireline Services
- 6. Perforation
- 7. Well Stimulation Techniques
- 8. Artificial lift systems
- 9. Advanced Wells
- 10. Problem Well Diagnosis and Work over

*Note: Adding more chapters is governed by the time.

Course Teaching and Learning Activities:

Lectures: during week, the theoretical and practical lectures will be presented throughout the semester; the discussion of practical work within lab will be organized and illustrated with activities.

Assignments: after the lectures, the assignment will be explained and given to students. It is expected to be done on weekly bases.

Quizzes: the contents of each lecture will be discussed during class for open question and answer to make sure every student will participate and active.

In class brainstorming sessions: provide students with enough sources and background knowledge briefly within the topics during class to top up their challenge packs to be more active.

CLASS REQUIREMENT

- A Scientific Calculator
- Notebook

*Note: Students must bring a notebook, a pen, notebook, calculator, and the periodic table to every class

Assessment Tool	Description	Weight			
Quizzes	Four Quizzes are scheduled as shown in the semester schedule. Students will take 4 quizzes; all quiz grades will be counted toward your final grade (ABET A and E)	10%			
Assignments	Three assignments will be conducted during the semester; each assignment will be given as scheduled and posted on Google Classroom(ABET A and E)	10%			
Tests	Two tests will be conducted during the semester and each has 15% of the total grade. The test may include multiple-choice questions, True/False, short answers, and problem solving (ABET A, E and K)	30%			
Mid-term exam	Paper examination – all topics that were studied are included (ABET A and K)	20%			
Final Exam	Examination questions-all topics that were studied during the semester are included (ABET A, E and K)	30%			
ESSENTIAL READINGS: (Journals, textbooks, website addresses etc.)					

Textbooks:

- 1. Economides, M. J., Hill, A. D. and Ehlig-Economides, Petroleum Production Systems, Prentice Hall, 1993.
- 2. David, D, Production Technology 1, Heriot-Watt University. Institute of Petroleum Engineering.

References:

SPE technical papers in related subjects

COURSE POLICY (including plagiarism, academic honesty, attendance etc)

KUST Academic Policy

http://sar.komar.edu.iq/files/Student%20hand%20Book%202013.pdf

Attendance:

- Students are expected to attend all lectures and must attend all examinations, quizzes, and practical exercises.
- There is no make-up work for students who miss classes without official permission.
- Student must arrange with the faculty to make-up the missed class.
- Students are subject to the regulation and policies mentioned in the KUST Student Handbook.
- KUST guidelines for lateness are as follows: Three occasions of lateness count as one absence. (You can be considered late the first minute of the lecture time).

GUIDELINES FOR SUCCESS

- 1. Be able to work independently and in groups,
- 2. Pay-attention in the classes is the guarantee of success,
- 3. Extend your knowledge beyond the given textbooks in order to master the subject, and
- 4. Try not to miss the classes

Course calendar: Please check the academic calendar for 2015/2016

Week	Beg/End dates	Topics (Chapters)	Course Discussion	Assessment
1	SEP 28 – OCT 1	Introduction to Petroleum Production Methods	Role and Responsibilities of a Production Engineer, Basic layout and equipments of the production oil and gas field. Review of wellbore/reservoir connection and implications for fluid flow	
2	OCT 4- OCT 8	Reservoir Production Concepts	Reservoir Depletion Concepts. Reservoir Drive Mechanisms. Solution Gas Drive. Gas-Cap Expansion Drive. Water Drive Reservoir. Gravity Drive. Compaction Drive. Combination Drive. Reservoir Depletion or Material Balance Concepts Application of Material Balance.	
3	OCT 11- OCT 15	Reservoir Production Concepts	The Composite Production System. The Producing System. Utilisation of Reservoir Pressure. Supplementing Reservoir Energy. Fluid Injection into the Reservoir. Supplementing the Vertical Lift Process.	ASSIGNMENT-1
4	OCT 18 – OCT 22	Reservoir Inflow Performance and Nodal Analysis	Well Inflow Performance. Darcy's Linear and Radial, Flows in Different States. Non-Darcy Flow. Tubing Performance. Dry Gas Flow. Single Phase Liquid Flow. Gas-Liquid Mixture.	QUIZ-1
5	OCT 25- OCT 29	Reservoir Inflow Performance and Nodal Analysis	PI for oil and gas wells in steady state flow; concepts of flow in pipes and impact of pressure loss components; hydrostatic head and functional pressure loss gradients for oil, gas, vertical and inclined wells;	TEST-1
6	NOV 1- NOV 5	Reservoir Inflow Performance and Nodal Analysis	Exercise: Mathematical problems on Inflow Performance	Assignment-2

7 NOV 8 – equipr NOV 12 an Desig	tion bts , ents Production Tubing. Specification of Tubing.Wellhead Systems. Xmas tree. Packers. Packer Applications. Wireline Nipple and Mandral Systems. Subcurface Sofety Systems
	MID TERM EXAMINATION NOV 16 – NOV 21
8 NOV 22- NOV 22- NOV 26 equipr an Desig	tion Bottom Hole Completion Techniques. Selection of Flow Conduit Between Reservoir and Surface ents Completion String Facilities. Completion String Components. Wellhead Xmas Tree.
9 NOV 29- Wire DEC 03 Serv	String Wireline Operating Tools Tubing Assignment-3
10 DEC 06- DEC 10 Perfor	Options and advantages/disadvantages for perforating oil and gas wells; over balance and under balanced perforating; charge design and Quiz-3 factors that influence performance; effect of completion and work over operations
11 DEC 13- DEC 13- DEC 17 Stimul Techn	tion problem in the field; Surface
12 DEC 20- Artifici DEC 24 Meth	World oil production' selection of AL based on LESI-7
NEW YE	AR HOLIDAY (27 DEC- 31 DEC)

13	JAN 03 – JAN 07	Advanced Wells	Horizontal Wells. Extended Reach Wells. Multi- lateral Wells. Intelligent ("Smart") Wells. Coiled Tubing Drilling. Underbalanced Drilling. Multiple Fractured Horizontal Wells.	Quiz-4	
14	JAN 10- JAN 14	Problem Wells Diagnosis and Workover	Introduction. the Source of Well Problems.Reservoir Associated Problems. Productivity or Injectivity Problems.Reservoir Management Considerations. Completion Associated Problems		
15	JAN 17- JAN 21	Review Work	Review of the course		
	FINAL EXAMINATION (JAN 24 – JAN 31)				