

General Physics II			
Course Title	General Physics II		
Course Code	PHY 1411C	No. of Credits	4
Department	All	College	Engineering
Pre-requisites Course Code	PHY 1410C	Co-requisites Course Code	
Course Coordinator(s)	(S1) Dr. Salah Aziz, Mr. Hazhar Rasull (S2),	and Dr. Mohammed	Ibrahim (S3 and S4)
Email	salah.aziz@komar.edu.iq m.lbrahim@komar.edu.iq Hazhar.rasull@komar.edu.iq	Office No.	Dr. Mohammed Ibrahim:241 M. Hazhar Abdullah: 229
Lab Instructors	S1, S2, S3 M. Peshawa Omer and S4,S5 M. Hazhar Abdulla.		
Tutorial Hours	Thursday G – 13 – 14, From 14:00 to 16:00,		
Class Hours	S1 (8:009:30) M. W, S2 (14:00-15:30) M. W, S3 (10:00-11:30) S, T, S4 (16:00-17:30) S, T		
Contact Hours	Dr. Mohammed Ibrahim: (13:30-15:30) S,T M. Hazhar Abdullah : (16:00-18:00) M		
Course Type	Theory and Lab		
Offer in Academic Year	Spring 2016		

COURSE DESCRIPTION

Course Description: General Physics II (4 c.h: 3 hrs theoretical and 3 hrs experiment): Pre-requisites: General Physics I and Calculus II. This course uses calculus-based mathematical models to introduce the fundamental concepts that describe the physical world. Topics include electrostatic forces, electric fields, electric potentials, direct-current circuits, magnetostatic forces, magnetic fields, electromagnetic induction, alternating-current circuits, and light.

Grade Distribution: 75% Theory

25% Experiment

Students will take practice session 3 hours a week through laboratory work. While the theoretical part will be 3 hours in class, 2 times per week.

COURSE OBJECTIVES

There are two objectives for this course:

- 1. Enabling students to learn about two subjects which have important role in developing the students' knowledge in general. The two subjects are: Electromagnetism and Optics, and
- 2. Enabling students to use physics laws in areas which contribute to students' career.

COURSE LEARNING OUTCOMES

After participating in the course, students would be able to:

1. Knowledge of Electromagnetism:

- a) Students should be able to understand and answer conceptual questions related to electrical charges, and electrical and magnetic forces.
- b) Students should be able to apply the concepts of electric fields and electric potential to relevant problems.

2. Knowledge of Optics:

c) Students should be able to understand and answer conceptual questions related to lens, mirrors and images forming.

3. Application:

- d) Students should be able to compute (solve problems) quantities in electromagnetism
- e) Students should be able to compute (solve problems) quantities in electric circuits
- f) Students should be able to compute (solve problems) quantities in optics (Lenses and Mirrors)

4. Analysis of electric circuits:

g) Students should be able to analyze electric circuits and predict their functions.

5. Conducting Experiments

f) Students should be able to set and conduct experiments on electromagnetism and optics.

(Note: Experiments should be chosen based on their links to the Learning Outcomes.

GUIDELINES ON GRADING POLICY

Points	Percentage Scores	Grade
A	95–100	4.0
A-	90-94	3.7
B+	87–89	3.3
B	83-86	3.0
B-	80-82	2.7
C+	75–79	2.3
C	70-74	2.0
C-	65-69	1.7
D+	60–64	1.3
D	55-59	1.0
D-	50-54	0.7
F	0–49	0
1	Incomplete Course Work	
W	Official Withdrawal	

Note: The minimum passing grade to pass this course is C- which is equivalent to 65%.

COURSE CONTENT

Course topics include:

- 1. Electric Charge and Electric Field
- 2. Gauss's Law
- 3. Electric Potential
- 4. Capacitance and Dielectrics
- 5. Current, Resistance, and Electromotive Force
- 6. Direct-Current Circuits
- 7. Magnetic Field and Magnetic Forces
- 8. Sources of Magnetic Field
- 9. Alternating Current
- 10. The Nature and Propagation of Light
- 11. Geometric Optics
- 12. Interference
- 13. Atomic and nuclear physics
- 14. Radiation protection

COURSE TEACHING AND LEARNING ACTIVITIES

Course Teaching and Learning Activities: (short description)

- 1. Contribution during the class discussions.
- 2. The lectures will be given to the students in PowerPoint slides.
- 3. White board will be used to give extra explanations as well as for solving problems.
- 4. There will be in class group work, where student will do in class exercises and turn the assignment to the instructor
- 5. A laboratory session will be offered to demonstrate the principles from lecture in the lab environment.

COURSE ASSESSMENT Tools		
Assessment Tool (Weight)	Description	
Homework (10%)	Conceptual: In class assignments covers one week materials	
Quizzes (10%)	Application: bi-weekly quiz covers two weeks materials	
2 Tests (20%)	Covers four weeks topics	
Mid-Term Exam (20%)	Covers 7-8 weeks topics	
Final Exam (40%)	Cumulative	
Extra (10%)	Extra assignment designed by the instructors for special cases	

ESSENTIAL READINGS: (Journals, textbooks, website addresses etc.)

Textbook:

University Physics with Modern Physics

Authors: Young and Freedman

Publisher: Addison-Wesley; 13 edition (2011)

ISBN-10: 0321696867 ISBN-13: 978-0321696861

References:

 Physics for scientists and engineers, by Tipler, 4th edition, ISBN: 1572594918,

Fundamental of Physics,

by Walker, 8th edition, ISBN: 0470044721,

College Physics,

by Geller and Young, 8th edition, ISBN: 0805378219.

COURSE POLICY (including plagiarism, academic honesty, attendance etc)

- 1- Lecture attendance is obligatory. The course notes and the textbook are not enough, The student should take notes as he/she is responsible for all material covered in lectures.
- 2- In case a student's miss classes, exams and quizzes without official permission, there will not be a make-up work for them. Otherwise they should talk with the faculty to make-up lost classes
- 3- Students are subject to the regulation and policies mentioned in the KUST Student Handbook.

GUIDELINES FOR SUCCESS

- 1. Work both independently and in groups of your peers, who can help you understand the course material.
- 2. Attend every lecture, discussion, and lab.
- 3. Try to interact with your class partner(s).
- 4. Try to stay active throughout the class period and take notes.
- 5. Don't hesitate to ask questions in class as well as during office hours.
- 6. Spend at least 2-3 hours each day for studying and doing homework.

Course calendar: Please check the academic calendar for 2015/2016 http://osar.komar.edu.ig/academic-calendar

Date	Week	Subject	Activities
28 Feb- 03 Mar	1	Chapter 21: ELECTRIC CHARGE AND ELECTRIC FIELD	
05 – 10 Mar	2	 Chapter 22: GAUSS'S LAW Charge and Electric Flux Calculating Electric Flux Gauss's Law Applications of Gauss's Law Charges on Conductors 	
12 – 17 Mar	3	Chapter 23: ELECTRIC POTENTIAL	
19 – 24 Mar	4	Nawroz Holliday	
26 – 31 Mar	5	Chapter 24: CAPACITANCE AND DIELECTRICS	
02 – 07 Apr	6	Continue	TEST # 1 (Chapters 21-24)
09 – 14 Apr	7	Chapter 25: CURRENT, RESISTANCE, AND ELECTROMOTIVE FORCE	
16 –21 Apr	8	Chapter 26: DIRECT-CURRENT CIRCUITS	

Date	Week	Subject	Activities
23 – 28 Apr	9	Midterm Exam Week (Chapters 21-26)	
30 Apr– 05 May	10	Chapter 27: MAGNETIC FIELD AND MAGNETIC FORCES	
07 – 12 May	11	Chapter 28: SOURCES OF MAGNETIC FIELD Magnetic Field of a Moving Charge, Ampere's Law Applications of Ampere's Law Magnetic Materials	
14 – 19 May	12	Chapter 31: ALTERNATING CURRENT Phases and Alternating Currents Resistance and Reactance The L-R-C Series Circuit Power in Alternating-Current Circuits Resonance in Alternating-Current Circuits Transformers	TEST # 2 (Chapters 27, 28, 31)
21 – 26 May	13	Chapter 33: NATURE AND PROPAGATION OF LIGHT	
28 May – 02 Jun	14	Chapter 34: GEOMETRIC OPTICS Reflection and Refraction at a Plane Surface Reflection at a Spherical Surface Refraction at a Spherical Surface Thin Lenses Cameras The Eye The Magnifier Microscopes and Telescopes	
04 – 09 Jun	15	Chapter 35: INTERFERENCE Interference and Coherent Sources Two-Source Interference of Light	
11 –16 Jun	16	Chapters 41,43: Atomic and Nuclear physics	

Date	Week	Subject	Activities
		Chapter 43 'continued': Radiation protection	
		 Biological effects of radiation Radiation safety 	
18 –23 Jun	17	Review Week	
25 – 30 Jun Final Exam (Chapters 21-43)			