

ENGINEERING MECHANICS: STATIC AND DYNAMICS COURSE SYLLABUS					
Course Title	rse Title Engineering Mechanics: Statics and Dynamics				
Course Code	MEE2405	No. of Credits	4 CH		
Department	CVE, ENV & PTE	College	Engineering		
Pre-requisites Course Code	General Physics I and Lab PHY1410C	Co-requisites Course Code	N/A		
Course Coordinator(s)	Dr. Diyar I. Ahmed	l			
Email	diyar.ahmed@komar.edu.iq	IP No.			
Other Course Teacher(s)/Tutor(s)	N/A	Google Classroom Code	njf599n		
Learning Hours	Section 1: Monday/Wednesday 10:00 A.M 12:00 P.M. Room No. 111 Section 2: Monday/ Wednesday 14:00 P.M 16:00 P.M. Room No. 113				
Contact Hours	Sunday/Thursday from 10:00 A.M. to 12:00 P.M., Room No. 212				
Class Website	https://classroom.google.com/u/0/c/OTI5NDU3ODVa The Google Classroom website will be used to post homework assignments, announcements, additional instructional material, etc.				
Course Type	College Requirement				
Offer in Academic Year	Spring/2016				
COURSE DESCRIPTION					

This course includes the elements of static in co-planar and three-dimensional systems; equilibrium of particles and rigid bodies; simple structures; centroids and center of gravity; beam shear and bending moment and virtual work. Analyzes kinematics and kinetics of particles, systems of particles, and rigid bodies. Discusses absolute and relative motion approaches. Employs force-mass acceleration, work-energy and impulse-momentum methods.

COURSE OBJECTIVES

Develop an understanding of the principles of statics and dynamics, and the ability to analyze problem in a systematic and logical manner including the ability to draw free-body diagrams. Ability to analyze the statics of trusses, frames and machine and the dynamics of particles, systems of particles and rigid bodies.

COURSE LEARNING OUTCOMES

After participating in the course, students would be able to:

- 1. Define the magnitude and directions of forces and moments and identify associated scale and vector products, [ABET Program Outcome, **a**, and **e**].
- 2. Sketch free body diagrams for two-and-three-dimensional force systems, [ABET Program Outcome, **a**, and **e**].
- 3. Solve simple problems using the equations of static equilibrium, [ABET Program Outcome, a, and e].
- 4. Estimate the forces and couples acting on a variety of objects, [ABET Program Outcome, a, and e].
- 5. Explain the structure of trusses, centroids and moment of inertia, [ABET Program Outcome, a, and e].
- 6. Recognize kinematic and kinetic analysis using forces and acceleration and work and energy for particles and systems of particles, [ABET Program Outcome, **a**, and **e**].

Grading Scale:

Points	Percentage Scores
A	95-100
A-	90-94
B+	87-89
В	83-86
В-	80-82
C+	75-79
C	70-74
C-	65-69
D+	60-64
D	55-59
D-	50-54
F	0-49
W	Withdrawal
I	Incomplete
Note: The minimum passing grade to	p pass this course is C- which is equivalent t

COURSE TEACHING AND LEARNING ACTIVITIES (short description)

This course will be carried out in **4 hours**, **2 times** lecture per week. The semester has 15-instructional weeks followed by one week of exam. Course instructor will:

- Utilize power point presentation to present the course information.
- The board space to solve problems with students.
- There will be in class group work, where student will do in class exercises and turn the assignment to the instructor.

Note: Pop quiz might be given unexpectedly during the lectures.

Assessment Method	Description	Weight
Quizzes	Quizzes are scheduled as shown in the semester schedule. Students will take minimum 4 quizzes; all quiz grades will be counted toward your final grade.	20 %
Assignments/Group Discussions	Students will be evaluated by the instructor based on the assigned tasks and solving problems arising in the class.	10 %
Mid-Term Exam	The mid-term exam will be conducted after week 7 of the semester. It will cover the first half of the course contents.	20 %
Test	This Test will be conducted after week 12 of the semester. It will cover part of the second half of the course contents.	20 %
Final Exam	The final exam will be designed to cover all the students' learning outcomes for this course, the exam will be closed book.	30 %
Total		100%
te: Passing Grade is 65 % a		
SENTIAL READINGS: (Tex	(tbooks)	
(tbook: e: Engineering Mechanics: \$ thor: Hibbeler blisher: Prentice Hall; 13 th e \$ N-13: 978-981-06-8134-0 \$ N-10: 981-06-8134-8		

References: Title: Schaum's Outline of Engineering Mechanics: Static (Schaum's Outline Series) Author: Nelson, Best, Mclean, Potter Publisher: McGraw-Hill; 6th edition (2010) ISBN-10: 0071632379 ISBN:-13: 978-007163279

Title: Vector Mechanics for Engineers: Statics and Dynamics Author: Eisenberg, Beer, E. Russell, Johnston, Mazurek, Clausen Publisher: McGraw-Hill Higher Education ISBN-10: 0073212229 ISBN-13: 978-0073212227

TEACHING PHILOSOPHY

The successful completion of this course requires your <u>attention, hard work, and respect</u>. In return, I will strive to create a classroom setting that encourages <u>learning, critical thinking, and</u> respect for all students. I will endeavor to meet your academic needs, and as such encourage all students to take advantage of the weekly office hours. I enjoy helping students outside of the classroom. However, please be respectful of my time, as I have other duties to perform within the department. <u>This course will be CHALLENGING</u>, but your hard work will be rewarded by positive feedback, representative grades, and better understanding of the mechanical and dynamic world and necessary preparation for future courses.

COURSE POLICY (including plagiarism, academic honesty, attendance etc)

Attendance Policy:

Students are expected to attend each class for the entire semester. Students are responsible for material presented in lectures. Attendance is taken at the end of each class. Only students with official KUST absences, family crises, and illness are excused from class. This in no way cancels any responsibility for work due or assigned during absence. Three occasions of lateness count as one absence. The student who misses more than 10 percent of the course classes will be expelled.

Make-up Policy:

Because all examinations are announced in advance a zero will be assigned to any missed examination unless a student has a legitimate acceptable reason, such as illness, for not being able to take the examination during all the days when the examination was announced.

Academic Dishonesty:

Any type of dishonesty (plagiarism, copying another's test or home-work, etc) will NOT be tolerated. Students found guilty of any type of academic dishonesty are subject to failure in this course, plus further punishment by the University Consul.

Deadlines/Due Dates:

Recognizing that a large part of professional life is meeting deadlines, it is necessary to develop time management and organizational skills. Failure to meet the course deadlines will result in penalties. Work may be submitted early.

GUIDELINES FOR SUCCESS

Contacting Hours:

You must communicate with your instructor during the class time and office hours. **DO NOT** come to my office unless there is an emergency.

Classroom Etiquette:

There is one basic rule in this lass and that is: <u>Respect yourself, your peers and the instructor.</u>

How can you follow this rule?!

- 1. Be on time to class, so as not to disturb your colleagues or the instructor.
- 2. Do not partake. It is distracting activities during the lecture, such as talking to your friend or using a cellphone.
- 3. Respect the questions being asked by your peers.

Succeeding in Class:

- 1. Be on time and be prepared.
- 2. Be an active participant in class. **ASK QUESTION**.
- 3. Do not miss class. Your performance is correlated to your attendance.
- 4. Learn to think and understand NOT to memorize concepts.
- 5. Spend 2-3 hours doing homework, practice questions and reading the text for every hour spent in lecture. FOR A 4 CREDIT HOURS COURSE, YOU SHOULD BE SPENDING 8-12 HOURS A WEEK STUDYING.

E-MAIL ETIQUETTEOF COMMUNICATION

Please note the following in regards to e-mail communication:

- 1. It is your responsibility to update your Komar-email address daily for course updates. Instructor will not be able to contact you if you fail to have an email address and you could potentially miss important information about the course.
- 2. Email will only be answered if it comes from Komar-email address. Faculty will not respond to unprofessional email addresses.
- 3. Mail should have a subject heading which reflects the content of the message.
- 4. Your message should begin with an appropriate salutation, including the name of the person being addressed, and end with thanks followed by your full name of the sender.
- 5. Emails that do not follow the above guidelines, or are written in an unprofessional and / or disrespectful manner as well as anonymous emails will not be addressed.
- 6. Failure to check e-mail or moodle may result in you missing important assignments and subsequently affect your grade.

Date	Week	Subject	Activities
Feb 28, 2016	1	CHAPTER 1: INTRODUCTION AND GENERAL PRINCIPLES	Syllabus
		1.1: Mechanics	Agreement
		1.2: Fundamental Concepts	
		1.3: Units of Measurements	
		1.4: The International System of Units	
		1.5: Numerical Calculations	
		1.6: General Procedures for Analysis	
March 6, 2016	2	CHAPTER 2: FORCE VECTOR	Reading
		2.1: Scalars and Vectors	Quiz #1
		2.2: Vector Operations	
		2.3: Vector Addition of Forces	
		2.4: Addition of a System of Coplanar Forces	
March 13, 2016	3	CHAPTER 3: EQUILIBRIUM OF A PARTICLE	Quiz #1
		3.1: Condition for the Equilibrium of a Particle	
		3.2: The Free Body Diagram	
		3.3: Coplanar Force Systems	
		3.4: Three-Dimensional Force Systems	
March 27, 2016	4	CHAPTER 4: FORCE SYSTEM RESULTANT	Reading
		4.1: Moment of a Force-Scalar Formulation	Quiz #2
		4.4: Principle of Moments	
		4.6: Moment of Couple	
		4.7: Simplification of a Force and Couple System	
		4.8: Further Simplification of a Force and Couple System	
Amril 0, 0010	F	4.9: Reduction of a Simple Distributed Loading	0
April 3, 2016	5	CHAPTER 4: CONTINUED	Quiz #2

Course Outline Spring Semester 2015/2016

Date	Week	Subject	Activities
April 10, 2016	6	CHAPTER 5: EQUILIBRIUM OF A RIGID BODY	
		5.1: Conditions for Rigid-Body Equilibrium	
		5.2: Free-Body Diagrams5.3: Equations of Equilibrium	
April 17, 2016	7	CHAPTER 5: EQUILIBRIUM OF A RIGID BODY (CONTINUED)	Reading
			Quiz #3
April 22, 2016		MIDTERM TEST: CHAPTERS 1, 2, 3, 4 & 5	
May 2, 2016	8	CHAPTER 6: STRUCTURAL ANALYSIS	Reading
		6.1: Simple Truss 6.2: The Method of Joints	Quiz #4
		6.3: Zero-Force Members	
		6.4: The Method of Section	
May 8, 2016	9	CHAPTER 6: STRUCTURAL ANALYSIS (CONTINUED)	Quiz #3
May 15, 2016	10	CHAPTER 7: INTERNAL FORCES	
May 10, 2010	10	7.1: Internal Loadings Developed in Structural Members	
		7.2: Shear and Moment Equations and Diagrams	
May 22, 2016	11	CHAPTER 9: CENTER OF GRAVITY AND CENTROID	
-		9.2: Composite Bodies	
May 29, 2016	12	CHAPTER 10:MOMENTS OF INERTIA	
, ,,		10.1: Definition of Moments of Inertia for Areas	
		10.2: Parallel-Axis Theorem for an Area	
		10.4: Moments of Inertia for Composite Areas	
		TEST: CHAPTERS 6, 7, 9 & 10	
June 5, 2016	13	CHAPTER 13:KINETICS OF A PARTICLE: FORCE AND	
		ACCELERATION 13.1: Newton's Second Law of Motion	
		13.1: Newton's Second Law of Motion	
		13.4: Equations of Motion: Rectangular Coordinates	
June 12, 2016	14	CHAPTER 14:KINETICS OF A PARTICLE: WORK AND ENERGY	Quiz #4
		14.1: The Work of a Force	
		14.2: Principle of Work and Energy 14.3: Principle of Work and Energy for a System of Particles	
June 19, 2016	15	REVIEW AND MAKE UP	
June 24, 2016		FINAL EXAM WEEK (NO CLASSES)	
	I ABUS I	S SUBJECTED TO CHANGES	

***THIS SYLLABUS IS SUBJECTED TO CHANGES**